Elevated temperature has already caused a significant loss of wine growing areas and resulted in inferior fruit quality, particularly in arid and semi-arid regions. The existence of broad genetic diversity in V. vinifera is key in adapting viticulture to climate change; however, a lack of understanding on the variability in berry metabolic response to climate change remains a major challenge to build ad-hoc strategies for quality fruit production.
Plantations
The date palm (Phoenix dactylifera L.) fruit is of major importance for the nutrition of broad populations in the world’s desert strip; yet it is sorely understudied. Understanding the mechanism regulating date fruit development and ripening is essential to customise date crop to the climatic change, which elaborates yield losses due to often too early occurring wet season. This study aimed to uncover the mechanism regulating date fruit ripening.
Exploiting consistent differences in radiation and average air temperature between two experimental vineyards (Ramat Negev, RN and Mitzpe Ramon, MR), we examined the impact of climate variations on total carotenoids, redox status, and phenylpropanoid metabolism in the berries of 10 white wine grapevine (Vitis vinifera) cultivars across three consecutive seasons (2017–2019). The differences in carotenoid and phenylpropanoid contents between sites were seasonal and varietal dependent.
Global climate change and the expected increase in temperature are altering the relationship between geography and grapevine (V. vinifera) varietal performance, and the implications of which are yet to be fully understood. We investigated berry phenology and biochemistry of 30 cultivars, 20 red and 10 white, across three seasons (2017–2019) in response to a consistent average temperature difference of 1.5°C during the growing season between two experimental sites. The experiments were conducted at Ramat Negev (RN) and Ramon (MR) vineyards, located in the Negev desert, Israel.
Roots are the first plant organ to encounter, sense, and respond to soil salinity. Like for many moderately salt tolerant species, roots of olive (Olea eurpaea) trees are the principal players in salt tolerance. We studied roots of mature olive trees in order to illuminate the yet vague mechanism(s) of root salt exclusion. Root structural traits were examined in olive trees grown in lysimeters and from a long-term salinity field trial. The distribution of salts was detected in root cross-sections using scanning electron microscopy combined with energy dispersive spectroscopy.